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THE DYNAMICS OF AN ELLIPTICAL CRACK IN AN
ELASTIC SPACE: SOLUTION USING PADE APPROXIMATIONS*

A.V. KAPTSOV and E.I. SHIFRIN

Dynamic problems in the theory of elasticity involving normal cleavage
cracks in an unbounded linearly-elastic space under harmonically varying
and impact loads are considered. The study involves a reduction of the
problem to integrodifferential eguations for normal jump displacements
on the crack surface. The method used to solve these is based on Pade
approximations {PA). The use of this method requires a very accurate
representation of the coefficients of a Taylor series expansion of the
solution. Thus, the problem of the harmonic effects is solved using PA
only for elliptical cracks, when the coefficients of the Taylor series
expansion with respect to the wave number are expressed in analytical
form. The problem of the impact effect is solved analytically by
studying the roots of the Pade approximation for the harmonic problem.
The most important characteristics of the solution (stress intensities
and the total scattering cross-section) and the effects of the
eccentricity of the ellipse on these are investigated. The results
obtained are compared with known ones.

1. The pseudodifferential equation for a crack, to the surface of which normal, harmonic
stresses are applied has the form /1/

ppb (@) =t z=(5, 2) EGC b{x) =0, 2% 6 (4.4
Qp (B) = 2uf72[E® (B2 — B0 — (B° — B2 (B — of)]
.g = (Elt §2)9 ga = i g !2: a = ﬁ)ng, g = m/Cx

Here, b(z) is the amplitude of the normal jump displacement, ¢ ({z} is the amplitude of the
forces acting, G is the region in the plane z; =0 occupied by the crack, pg is the com-
pression in the region G, & is the closure of the region @&, € is a pseudodifferential
operator, u is the shear modulus, @ is the frequency of variation of the forces applied, Cy4
and C, are the longitudinal and transverse propagation velocities (respectively) and the
value of 8% is chosen to be positive for § >0 and —i|S [/ for §<O.

Eq.(1.1) was obtained on the assumption that the Sommerfeld condition is satisfied at
infinity and that in the deformation process overlapping of the crack surfaces does not occur.
This may be ensured, for example, by the presence of an initial opening in the crack or an
additional static force. We note that by virtue of linearity, Eq.({1.l) also corresponds to
the problem of the scattering of plane harmonic elastic waves by a crack. Equations of type
{1.1) also arise in the case of the action of elastic loads, after application of a Fourier
or Laplace transformation in the time domain.

The problems considered here have been studied numerically in a number of papers. Some
of these use methods applied only to specific forms of cracks /2-7/. Eq.{1l.1} was also
solved in /8/ using a two-basis projection method /9/ applied to the problem of cracks of
arbitrary shape.

The idea of the Padé approximation involves the rearrangement of a function represented
by a Taylor series with respect to a basis of rational functions, which enables us to broaden
its area of convergence and study the behaviour of the function in the complex domain. A
detailed description of the properties and use of PA is given in /10/.

Here, we will only assume the main formulae. Suppose that we are given a power series
representing the function
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Ha)=D) €t
=0

A Pade approximation of order [L/M] 1is a rational function of the form

ao+ulx+...+aLzL
by + b1z + . . . + bpga™

[LiM] = (1.2)

the Taylor series expansion (about zero) of which agrees with the expansion of f(z) with an
accuracy up to a term of order L4 M+ 1.

D) Cizt = [LiM] 4 0 (14 (1.3)
i=p

This condition leads to a system of linear equations in the unknown coefficients a;
and b; of the PA. A number of theorems give the conditions for the Pade approximation [Ly/Ml
to converge to the original function /10/. In the absence of additional information about
the meromorphic function subject to approximation using the Padé approximants, it is advisable
to use diagonal [My/My] or paradiagonal [My4 J/Mil, Mx— o sequences. We note that since
the Padé approximation approximates a meromorphic function in a broad area using a finite
number of expansion coefficients at a single point, the coefficients of the Taylor series
should be computed with some accuracy.

2. We will now find a Taylor series with respect to the wave number to solve (l.1). We
assume that the amplitude of the forces applied is constant (f(z) = 1) and we shall seek a
solution of Eq.(1.1) in the form

b B = Sh@F. s6, b =0 z&T @.1)

Suppose that the result of applying the operator Q; to the function b&;(x) is expressed
in the region of the crack G by the formula

Qgd; (z) = glo BV (b)) (2-2)
Substituting (2.1) and (2.2) into Egq.(1.l), we obtain

3 3 prenv ) =1 2.3)

k=0 m=0

Comparison of the coefficients of individual powers of B on the left and right sides of
Eq.(2.3) leads to a system of equations

k
Volbo) =1, Volby)=— fz"l V(- (24

Thus, in order to solve problem (l.1) in the form (2.1), we must obtain an explicit
expression for the functions b; and Vi (b)). This may be done if we assume that the region
G has a canonical form.

We return to the problem of a circular crack of radius a. We denote

YE)=@ - r=lzi<a () =0,r>q
N(k)
bk= 2 Ck,p‘pm%
=0
It was shown in /8/ that the result of applying the operator  to the function ¥ may

be represented in the form of an infinite power series (2.2) with respect to the wave number,
with complex coefficients. 1In simplified form, the functions V,(y¥) may be expressed in
terms of the hypergeometric function

RO, T (1 4 )T (Ma) 3—j 1—7 4.
@Y T (v + 7+ 172) (T v ) @9

V(") =
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H j=2,4,6...
=t - __1 U2y =2, 4%
(Do " 1’ (Dl 0‘ d)j I‘()'/Z) {H(I]-s)/m j= 3, 5, 7...

R na[q 201 o (Gpt1)@p+3) 2p 41
Byt = w? [t —2 2 n 4 LE ot |+ o e T

I __ peptl _ g P41 o (p+1)(p+2) " p+1
Byt = et [1—8 L v+ 16 B g R ot | 48 e

n* = (1 —~20)/2 (1 — o))

where ¢ is Poisson's ratio and I (z) is the Gamma function.
For y=i+ Y, (i=0,1,2...), this hypergeometric function degenerates into a poly-

nomial, as a result of which we have
14, 7y

Vi) = 3 S (2:6)
m==0
o _ 0 2N (3 4 ) T () B ((F— 1)/2)
@Y T — 12 —m)T 2+ 1—m)
o N(G)+i ) /2 i=024...
f(w)==N(J,~) : N<7)—l(j_3)/2, i=351...

It follows from formulae (2.5) and, (2.6) that V, pr*/2) =0, whence b, = 0. The left
side of Eq.(2.4) takes the form

N(k) N(k)
VO (bk) = nzlo anan’ Y1I = m§n Ck. mS?n, n k 7= 1 (2.7)

Substituting &; into the right of (2.4) we obtain the expressions
k
- 122 V(br-y) = IIy (k) + I, (k) {2.8)

N(k)
I, (k) = — Eﬂx.‘}.’nr”", E>2,k%3; I3)=0

N(k—3)
I, (k) = — D k>3, kd 1,(2) =IL,(4) =0,
n=g
N(k—1—8) N(k—1—8)—m
Xg.)n = 2! E Cr_1-s-2m, pS;"_":B, s=1,2
m=n p=Q,(m, n}
{ 0, for m=0,14; 1<nNKkK), m>n—1
Qlmm) =, _4_m for 1<n<NE, m<n—1
@y (myn) =0

From {(2.4), (2.7) and (2.8), we obtain a sequence of systems of equations in the unkown
coefficients Cy m- We note that formula (2.7) enables us to construct a solution of the
static problem of a circular crack to the surface of which axially symmetric stresses of the

form p=p+ P{z + ... 4+ erZN.

are applied.
In order to solve Eq.(1.1) in the form (2.1) in the case where G is an ellipse of the

form  z,Ya,® + z,%/a, < 1, it is natural to use a technique analogous to that described above
for a circular crack, but replacing the function ¥ by ¢", where

@ (@) = (1 — z%ay — 20", = G ¢¥ () = 0,2 £ 6.

Because of the absence of axial symmetry, it is not possible to manage with the functions
¢¥ alone and we need to find the result of applying the operator £ to the functions Th ¢ =

7,P7,79". This problem is very tedious. Thus, here, we will only describe the two main stages

of its solution.
In the first stage, we compute the function Qp¢¥ which is expressed as a two-dimensional

integral over the plane of the Fourier transform variables written in polar coordinates.

First we take the integrals with respect tc the radius which, using the equation

exp (ircos®) = Jo(r) 4+ 2 i i (r) cos (n?)
n=0
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reduce to the integrals given in /8/. Then, we compute the integrals with respect to the
angle, which reduce to tabulated integrals. The final result is expressed as a power series

in the wave number of the form (2.2) where the decomposition coefficients y =i+ 1, are
given by

f(i%i) G, H—=n 54 an. 2k
Vi = 2 3 ofwiy, j=0,23,...
n=0 k=0

2.9)
Vi(eh) =0, g =zfa, zE6
#® 03T (s + HT () T (f — 1)/2)
o == Ny, n
(21)’1’((1—1)/2——k—-n)f‘(l+ii2+1—k—n)
D3kt m 4 1a) By (G — D2~ ) Ve
M, "_2 Z TG T T F &+ m FnF TA AT — B =)
-1 Vi=2(—1)% k=1,2,3
Ey(p) = Z ,,,,(,_,,,), (=" Fa(m+ o pi b+ 150
= (a? — a,?)/a;?
If @ =a, =a, formula (2.9) is transformed into (2.6).
In the second stage, to compute QBT,‘;,q, we use the following formula (which may be
proved by mathematical induction):
[p/2] [9/2] p-2k pg-2m Y+p+g-k-m
__pld ) L1+ v DY~ D"
Py lp7 = CorT 2 2 TG =2 =27 2.10)

D, = 08/3ys, s = 1,2

(the square brackets denote the integral part of a number) .
amplltude of the applied forces is constant (t(z) =

T34 for even values of p and q only (p = 2k, ¢ = 2m)
following formula for these functions only

Since in the given case the
it is sufficient to use the functions
By virtue of this, we obtain the

ok am RO Jem) BRI MR e ner 20, 2r
ViGiutet = 3 2 mr " TYY (2-11)
n r=

. oG i)+k+m, j=2,4,6,...
ik,
RO 4k m) = {CP(J, i) j=357,...

o gi _ R0 0 ) TERT G —1)2)
mr @D G A 2+ u+ v —r — n)@a) @r)

. @n + 2u —20)1 @r + 20— 200 Voo niup
pZo‘q=Zo’ plal@u—2p@v —29)IT(G—D2—r—n—u—v+p+g

As before, the solution of (1.1) is represented using the series (2.1), where, for an
elliptically shaped crack, the function b;(z) is chosen in the form

Neg)y 4
2 2 Ck j+|(1+1)/2T21~2j 2J

=0 j=

Just as in the case of a circular crack, we obtain V) (b) =0, b = 0. sSubstituting &; into
the left-hand side of Eq.(2.4) leads to the expression
N(k) N(k)—n
Vo (bx) = Eo 2 Y m (2.12)
n=i m=g0

Yhom= ZJ 2: Cr, riisnsQnnd *°

i=n+m j=

Substituting b; into the right-hand side of Eq.(2.4), we obtain

k
_.12:]2 V (bg) = ;% (k) + T () (2.13y
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. N(s) N(k)—n
Wy = 3 3 XD, k> 2,k 30, (3) =0

N(k—3) N(k;.'i)-—n
22 e, k>3 kA4 Q) =1L (4 =0
per )
. N(k—11—3) w 4 i ’
sh k =7y ]\ 2w4145-21,
X - >J 2 2 Qn.m i ock—2w+2i—1-s, J+i(i+1)/2

n, m

L (k) =

w=T,(n, m) i=0 j=0
0, n+m<
r‘(n"n)={n+m_1, ngm>q1 wlem=ntm

From (2.4), (2.12) and (2.13), we find a sequence of systems of linear equations in the
coefficients Ck,n. We note that formula (2.13) enables us to construct a solution of the
static problem of an elliptical crack for a load given in terms of a polynomial containing
only terms of even degree in each variable. Similarly, we may obtain formulae to solve the

problem for loads in the form of an arbitrary polynomial.
3. We will consider the results of calculations for the problem of elliptical cracks,
In what follows,

involving PA solutions written in the form of power series as in Sect.2.
we took o= 0.25. We note that use of the Taylor series gives a solution only in a small
{static problem), since the function which determines the dependence

neighbourhood of f=10
of the solution on the wave number has poles.

Fig.l shows curves of A= |N|/N, as a function of the given wave number at the points
of the ellipse (0, ) (the continuous lines) and (the dashed lines) for ellipses with axis
ratios 1 : 1, 1 : 2, 1 : 4and 1 : 8 (curves I, 2, 3, 4). Here [N| is the modulus of the
amplitude of the stress intensity and N is the stress intensity at the same point for the
static problem with a uniform load of a single intensity. In the calculations, we considered

The restriction of the order of the PA is

PA of the form [L/L], [L+ 1/L}, [L/IL 4+ 1] up to L=9.
associated with the loss of accuracy in computing the coefficients of the Taylor series  ex-

(a1, O)

pansion of the solution according to the formulae of Sect.2. All the calculations were
[9,9] are given.

carried out with double precision and the results for the PA
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2 A \\
II 7 AN -
/ =
1
/
1+ )
/
i
4 L L L 7 ! ! ! L
! 2 7 v 1 2 3 y
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Fig.2
To illustrate how quickly the results of the calculations are determined, depending on
the value of the wave number, and to determine the sensitivity of the calculated values to
the order of the PA [L/L], we list below the dependence (on the order of the PA) of the first
D (0 = | OO N, % = 1,2, 3)

maximum A%, the first minimum A® and the second maximum



421

together with the corresponding resonance values of the wave number p* ¢ corresponding to
the problem of a circular crack

[L/L] [3/3) [44  [5/5) (6/6] [7/7) i88]  19/9]
A 1.4701  1.4788 1.4791 1.47T91  1.479%1 1.4791 1 4791
BWg 1.5 1,5 1.5 1.5 1.5 1.5 1.5
A® 0.3274 0.4071 0.3971 0.4023 0.3980 0.3975 0.3975
B 5.2 3.0 3.0 3.0 3.0 3.0 3.0
A® — 0.6422 0.7570 0.6920 0.7876 0.8296 0,8358
B®q — 5.2 5.5 4.3 4.3 4.3 4.3

It is clear from Fig.l that for elliptical cracks, as the eccentricity of the ellipse
increases, the value of the first maximum A® at the point (0,as) and the corresponding
resonance value B tend to values corresponding to solutions of the planar problem /11/
(the dashed curve). We note that the value of A® at the point (0, as) depends non-
monotonically on the eccentricity of the ellipse. Increasing the eccentricity of the ellipse
also leads to degraded convergence of the PA since in the given range of variations of  [L/L}
for the ellipse 1 : 8 at the point (0,a) only the first maximum is stabilized. This is
clearly due firstly to purely computational reasons and secondly to the fact that in the
planar problem the decomposition of the jump displacements in an asymptotic series contains
not only powers but also logarithmic terms /11/.

Comparison of the stress intensities derived using the method based on PA and the two-
basis projection method /8, 9/, showed that they agree to within 5% for wave numbers in the
given band.

One important characteristic which determines the effectiveness of the scattering of
planar elastic waves by a defect is the total scattering cross-section 3=, which is expressed
in terms of the ratio of the flux density of the energy of the scattered waves averaged over
the period of the oscillations and integrated over all directions to the flux density of the
incident waves averaged over the period of oscillation /12/. 1In the case of normal incidence
of planar longitudinal waves on the crack, the total scattering cross-section is given by the
following formula from /12/

S0 =B/m SS Im (b) dz
G

Fig.2 shows a graph of X_(fr)/s for cracks of various shapes, where S 1is the area of
the region of the crack and r 1is the radius of a circle of area S. It illustrates the cases
of ellipses with axis ratios 1 : 1, 1 : 2 and 1 : 4 and a square (continuous curves 1, 2, 3
and the dashed curve, respectively). Calculations were carried for all the cracks using the
two-basis projection method /8, 9/ and for the elliptical cracks using the method based on
PA. Since the value of I, as B—0 is of the order of ¢, PA were constructed for the

function Zz_/Bt. Moreover, the Taylor series expansion of Im(») in terms of B contains only
odd powers, whence we took §* as an independent variable for this function. Thus, the order
of the PA used was lower than in the investigation of the stress intensities. The figure
shows the results corresponding to PA of order ([3/4. The results of the calculations obtained
by the two methods agree. They also agree with previous results for the problem of a circular
crack /13/.

Based on numerical calculations, we may assume that the following isoperimetric inequality
is satisfied: for all cracks of the same area the greatest value of 2, with respect to B
is a maximum for circular cracks.

4. We consider the non-stationary problem of the effect of shocks normal to the plane
of the crack for a typical case of a semi-infinite step load H (1) of unit height, applied
at time < =0 (H (v} 1is the Heaviside function). Application of a Laplace transformation in
the time domain with parameter s to the equations of the theory of elasticity leads to
equations which are identical with the equations for the problem of determining fluctuations
subject to the substitution ? = —s* /5, 7/. Consequently, the pseudodifferential equation
of the non-stationary problem has the form

Perut =, 26, ut=0, 2T (4.1)

ut(z,5) = \ecou @, v, L = H(s¥)

S8
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where the pseudodifferential operator symbol is derived from the symbol €; by the sub-
stitution @ =1is. From (1.1) and (4.1), its follows that u*(z,s) = b (z, is)/s. Thus, the
Laplace expansion of the solution of the impact problem in a series with respect to the
transformation parameter is expressed in terms of the Taylor series expansion with respect

to the wave number in the problem of determining the oscillations. Inversion of PA of order
[L/M] approximating the solution of u* (z,s5) does not appear to be difficult, since [L/M]
is a rational function /14/.

In particular, if all the M roots of the replacement of the approximation of order [L/M]
are simple, then

M M
K, X
u*(z,8) ==L +;Zf T uE T =Kot Y Kt “2)
= I=1

K;=limu*(z,s)(s—s))
S'-'S]v

where K; and $§; are complex numbers.

Fig.3 shows the case of PA of order [8,9] including curves of the variation of the
stress intensities as a function of time at the points of the ellipse (0,a) and (g,0), where
the notation for the curves is as in Fig.l. As the eccentricity of the ellipse increases,
the solutions at the point (0,as) converge to a solution of the planar problem /15/ and in
the case of a circle, they compare well with well-known results /5/ and with solutions
obtained by the authors using the two-basis projection method. It is clear that for =0,
we have N (0)+ 0, i.e. there is a computational error (which decreases as the order of the
PA increases).

Below, for the example of a circular crack, we show the process of stabilizing the
poles s;=a;+ ib; of PA of the form [L/L] as their order increases, here a, = —0.595 and
b, = 1.639 for the given values of [L/L].

[L/L] 4/4] (5/5) (6/6) m (8/8] 1991
as —2.332 —2.239 —0.989 —0.708 —0.771 —0.713
by 4.249 4.713 4.006 4.249 4,359 4,351
ag —_ — —3.081 —4.293 —3.904 —3,850
by —_ — 2.851 2.581 2,440 2.308

We note that the imaginary parts of the first two poles correspond approximately to the
first and second maxima of the frequency curve (see Fig.l, the continuous curve 1). As the
eccentricity of the ellipse increases, the convergence of the poles of the corresponding PA
deteriorates. For example, if we use PA of the form ([L/L] up to L=9, in the case of a
circular crack we find three poles close to zero, which for the ellipse 1 : 8 and the same
range of PA are the only roots close to zero.

5. In conclusion, we list the individual features of the method of solution employed
here.

1. As far as the requirements on the accuracy of computation of the coefficients of the
Taylor series expansion of the solution as concerned, the set of solvable problems is limited
only by the shape of the cracks for which we may obtain an analytical expression for the terms
of the series. However, the fact that we have been successful in the case of elliptical
cracks suggests that this set of problems is quite large.

2. Unlike previous methods where, in problems to determine oscillations, it was necessary
to find a numerical solution for each value of the wave number, here, we obtain analytical
expressions which approximate solutions directly in some region of variation of the wave
numbers.

3. The solution of non-stationary problems usually involves difficult and insufficiently
accurate procedures for numerical inversion of Laplace or Fourier transformations. In the
method based on Pade approximation, this solution is obtained by analytical inversion of an
approximate expression.

4. In this method, the computation time depends mainly on the calculation of the Taylor
series coefficients. Computation of 18 terms required less than 10 minutes in the case of a
circle and around 6 hours for an ellipse on an EC 1055 or an EC 1055 M computer. All the
previous calculations both to determine the oscillations and the impact effects take seconds.

5. It is possible, in principle, to increase the accuracy of the arithmetic operations
using a large number of Taylor series terms and thus determine an approximate solution in a
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range of variation of the wave numbers as large as desired.
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INVARIANT SOLUTIONS OF THE EQUATIONS OF THE NON-ISOTHERMAL STATIONARY FLOW
OF A VISCOUS FLUID IN TUBES*

R.N. BAKHTIZIN and R.K. MUKHAMEDSHIN

The group properties /1/ of a system of equations describing flows in
tubes of fluids the viscosity of which depends on the temperature are
investigated for large Peclet numbers. It is shown that for exponential
and power dependences there is an extension of the main group of
transformations. For these cases, invariant solutions which have a
physical meaning are considered.
The equations describing the motion of a viscous fluid in a cylindrical

tube may be written, in dimensionless form as follows for &<1,Pe>1

/2/:
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