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THE DYNAMICS OF AN ELLIPTICAL CRACK IN AN 

ELASTIC SPACE:SO~UTION USING PAD< APPROXIMATIONS* 

A.V. KAPTSOV and E.I. SHIFRIN 

Dynamic problems in the theory of elasticity involving normal cleavage 
cracks in an unbounded linearly-elastic space under harmonically varying 
and impact loads are considered. The study involves a reduction of the 
problem to integrodifferential equations for normal jump displacements 
on the crack surface. The method used to solve these is based on Pad& 
approximations (PA). The use of this method requires a very accurate 
representation of the coefficients of a Taylor series expansion of the 
solution. Thus, the problem of the harmonic effects is solved using PA 
only for elliptical cracks, when the coefficients of the Taylor series 
expansion with respect to the wave number are expressed in analytical 
form. The problem of the impact effect is solved analytically by 
studying the roots of the Pade'approximation for the harmonic problem. 
The most important characteristics of the solution (stress intensities 
and the total scattering cross-section) and the effects of the 
eccentricity of the ellipse on these are investigated. The results 
obtained are compared with known ones. 

1. The pseudodifferential equation for a crack, to the surface of which normal, harmonic 
stresses are applied has the form /l/ 

Here, b (2) is the amplitude of the normal jump displacement, t (x) is the amplitude of the 
forces acting, C is the region in the plane rg = 0 occupied by the crack, po is the com- 
pression in the region G, 6 is the closure of the region G, 8, is a pseudodifferential 
operator, u is the shear modulus, w is the frequency of variation of the forces applied, C, 
and c, are the longitudinal and transverse propagation velocities (respectively) and the 
value of SJ* is chosen to be positive for s>o and --I 1 s )‘I# for s < 0. 

Eq.(l.l) was obtained on the assumption that the Sommerfeld condition is satisfied at 
infinity and that in the deformation process overlapping of the crack surfaces does not occur. 
This may be ensured, for example, by the presence of an initial opening in the crack or an 
additional static force. We note that by virtue of linearity, Eq.Cl.1) also corresponds to 
the problem of the scattering of plane harmonic elastic waves by a crack. Equations of type 
(1.1) also arise in the case of the action of elastic loads, after application of a Fourier 
or Laplace transformation in the time domain. 

The problems considered here have been studied numerically in a number of papers. Some 
of these use methods applied only to specific forms of cracks 12-71. Eq.(l.l) was also 
solved in /8/ using a two-basis projection method /9/ applied to the problem of cracks of 
arbitrary shape. 

The idea of the Pad& approximation involves the rearrangement of a function represented 
by a Taylor series with respect to a basis of rational functions, which enables us to broaden 
its area of convergence and study the behaviour of the function in the complex domain. A 
detailed description of the properties and use of PA is given in /lo/. 

Here, we will only assume the main formulae. Suppose that we are given a power series 
representing the function 
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f cz) = $j c,.d 
i=n 

A Pad& approximation of order [L/MI is a rational function of the form 

[L/Ml= 
a,+a1z+...$a& 

b,+blz+...+b/ 
(1.2) 

the Taylor series expansion (about zero) of which agrees with the expansion of f(z) with an 
accuracy up to a term of order L+M+i. 

This condition leads to a system of linear equations in the unknown coefficients a, 
and bj of the PA. A number of theorems give the conditions for the Pad& approximation [LdMkl 

to converge to the original function /lo/. In the absence of additional information about 
the meromorphic function subject to approximation using the Pad& approximants, it is advisable 
to use diagonal [ME/&] or paradiagonal lMk*t/Mkl, Mk-m sequences. We note that since 
the Pad& approximation approximates a meromorphic function in a broad area using a finite 
number of expansion coefficients at a single point, the coefficients of the Taylor series 
should be computed with some accuracy. 

2. We will now find a Taylor series with respect to the wave number to solve (1.1). We 
assume that the amplitude of the forces applied is constant (t(z)= 1) and we shall seek a 
solution of Eq.(l.l) in the form 

b(r, B) = ~@&)V. ZEG, bi(x)=O, z@C 

Suppose that the result of applying the operator 80 to the function A, (4 
in the region of the crack G by the formula 

co 

Q&(4 = k~OOk~k(bj) 

Substituting (2.1) and (2.2) into Eq.(l.l), we obtain 

(2.1) 

is expressed 

(2.2) 

(2.3) 

Comparison of the coefficients of individual powers of p on the left and right sides of 
Eq.(2.3) leads to a system of equations 

V,(bo) * 11 Vo (h) = - jil Vj (b-j) 

Thus, in order to solve problem (1.1) in the form (2.1), we must obtain an explicit 
expression for the functions b, and vk (bj). This may be done if we assume that the region 
G has a canonical form, 

We return to the problem of a circular crack of radius a. We denote 

It was shown in /0/ that the result of applying the operator Qb to the function V may 
be represented in the form of an infinite power series (2.2) with respect to the wave number, 
with complex coefficients. In simplified form, the functions Vf ($9 may be expressed in 
terms of the hypergeometric function 

v, W) = 
p@p+j-lr (1 + y) r (I/*) 

(2i)‘r(y+(i+1)/2) 
eF,(y,-_Y+~;l;~) 
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Do = rla - 1, Ql = 0, 
1 

@‘I = qpy 
J%,,m j=2,4,6... 
H;,_s),z, 

j = 3,5,7 . . . 

where u is Poisson's ratio and r(z) is the Gamma function. 
For y = i + V2, (i = 0, 1, 2 . . .), this hypergeometric function degenerates into a poly- 

nomial, as a result of which we have 

g, m = @la zi+‘-*v (3/a + i)r (‘/*)r ((j - 1)/2) 

(2i)'P((j-l)/2-~m)r(i+i/2+1-m) 

f(Li)= 
iv(i) + i j=O,2,4... 

N(j) ’ N(j)=(;:3),2, j=3,5,7... 

It follows from formulae (2.5) and, (2.6) that ‘v1($*+1/2) = 0, whence b, = 0. The left 
side of Eq.(2.4) takes the form 

N(k) NW 

Vo (b,) = %; yJan, yn = ,,?I_ ck, n&, nr k + 1 

Substituting b, into the right of (2.4) we obtain the expressions 

(2.7) 

(2.8) 
N(k) 

l-I1 (k) = - nz #nran, k>2,k#3; II,(3)=0 

N(k-8) 

II,(k) = - “; #)nran, k>3,k+4; &(2)=lI,(4)=0, 

N(k-1-a) N(L-l--r)--m 

x!!‘n= x 2 Ck-l-,-Z”,. ps;:?, s = 1, 2 
m=n ?-~#% n) 

0, 

cP1(m,n)= n-l--m 
1 

for m=O,i; l,<n<N(k), m>,n--l 

, for l<n<N(k), m<n--1 

‘Pz(m,n)=O 

From (2.4), (2.7) and (2.8), we obtain a sequence of systems of equations in the unkown 
coefficients ck, m. We note that formula (2.7) enables us to construct a solution of the 
static problem of a circular crack to the surface of which axially symmetric stresses of the 
form p = PO + PI” + . . . + PNrzN. 

are applied. 
In order to solve Eq.tl.1) in the form (2.1) in the case where G is an ellipse of the 

form x,~Icz,' + x,Vaz2 < 1 , it is natural to use a technique analogous to that described above 
for a circular crack, but replacing the function $V by 'pv, where 

r&J? (z) = (1 - x,*/al~ - CC,*/~,~)", z fz G; 'py (5) = 0,s @G. 

Because of the absence of axial symmetry, it is not possible to manage with the functions 
qq alone and we need to find the result of applying the operator 9, to the functions TV,,, = 

xlps2qq. This problem is very tedious. Thus, here, we will only describe the two main stages 
of its solution. 

In the first stage, we compute the function P~'pv which is expressed as a two-dimensional 
integral over the plane of the Fourier transform variables written in polar coordinates. 
First we take the integrals with respect to the radius which, using the equation 

exp(ircosd) = J,(r)+ 2 2 i"l(r)cos(n&) 
n=0 
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reduce to the integrals given in /8/. Then, we compute the integrals with respect to the 
angle, which reduce to tabulated integrals. The final result is expressed as a power series 
in the wave number of the form (2.2) where the decomposition coefficients y = i $ '1, are 
given by 

f(f,j) f(f, 0-n 

"i('P'+') = nZ, ,..O O,','.'~C&:~, j = 0,2,3,.. . 

V, (cp”+“*) = 0, yi = ri/ai, x E G 

fg,ik _ - P@/pr c/r + 1) r C/d r 0 - W) 

(Zi)’ I’ ((j - I)/2 - k - n) r (i + j/2 + 1 - k-n) Nk, n 

Ni,n=i i 
r* (k + m + ‘/d &+, (ti - 1)/z) 6 lr Vk+m 

m=O kl) 
I’(k+l/~)~(m+l/~)(k+m+n+i)lklml(n-k)l(i-m)l 

V, = 1, Vk = 2 (-l)k, k = 1, 2, 3 
k 

Ek (f’) = z ml (kk!- m)! (- 1),“F, (m + */w P; k + 1; x”) 

tn==u 

x” = (a,” - a,a)/a,~ 

If a,=a,=a, formula (2.9) is transformed into (2.6). 
In the second stage, to compute Q&., , we use the following formula (which may be 

proved by mathematical induction): 

(2.9) 

D, = Nay,, s = 1,2 

(the square brackets denote the integral part of a number). Since in the given case the 
Fplitude of the applied forces is constant (t(z) = 1) it is sufficient to use the functions 

P. 4 for even values of p and q only (p = 2k,q = 2m). By virtue of this, we obtain the 
following formula for these functions only 

As before, the solution of (1.1) is represented using the series (2.1). where, for an 
elliptically shaped crack, the function b,(z) is chosen in the form 

Just as in the case of a circular crack, we obtain V, (br) = 0, b, = 0. Substituting b, into 
the left-hand side of Eq.(2.4) leads to the expression 

R(f, i, k. m) RU. i, k. m)--n 

v, (yyyyp") = 2 Q:: 7’ n’ 'Y"~"Y; 
n* 

2 

R(j,i,k m)= cp(j,i)+k-tm, 

1 

j=2,4,6,... 

cp(A i), j = 3,5,7, . . . 

u, r. J, i 

;; 

(- i)U+r+lpja;-lr ph + q r (yzj r ((j - 1y2) 

= (2r)j+zu+n r (i + i + jp i u + u - r - n) (h)~ (zr)l 
X 

(2n + 214 - 2&l (2~ + 2~ - 241 Np+c-q, n+y_p 

p=. 4=. PI d (2~ - 2~)f (2~ - 29)I r (0 - 1)/2 - r - n - u - u -t P -t q) 

(2.11) 

N(k) i 

(2.12) 

Substituting bk into the right-hand side of Eq.(2.4), we obtain 

-,$rY,(bk,) = n,"(k) + n:'(k) (2.13) 
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N(k) N(k)-,, 

he’ (k) = 2 2 y:“y~X$,?$, k > 2, k # 3; IlIe’ (3) = 0 
n=o nl=0 

From (2.4), (2.12) and (2.13), we find a sequence of systems of linear equations in the 
coefficients Ck,,. We note that formula (2.13) enables us to construct a solution of the 
static problem of an elliptical crack for a load given in terms of a polynomial containing 
only terms of even degree in each variable. Similarly, we may obtain formulae to solve the 
problem for loads in the form of an arbitrary polynomial. 

3. We will consider the results of calculations for the problem of elliptical cracks, 
involving PA solutions written in the form of power series as in Sect.2. In what follows, 
we took 0=0.25. We note that use of the Taylor series gives a solution only in a small 
neighbourhood of fi= o (static problem), since the function which determines the dependence 
of the solution on the wave number has poles. 

Fig.1 shows curves of h= ]Nl/N,t as a function of the given wave number at the points 

ofthe ellipse (0,~) (the continuous lines) and (al,O) (the dashed lines) for ellipses with axis 
ratios 1 : 1, 1 : 2, 1 : 4 and 1 : 8 (curves 1, 2, 3, 4). Here IN] is the modulus of the 
amplitude of the stress intensity and Nst is the stress intensity at the same point for the 

static problem with a uniform load of a single intensity. In the calculations, we considered 
PA of the form [L/L], IL+ f/L], [L/L+ 11 up to L = 9. The restriction of the order of the PA is 
associated with the loss of accuracy in computing the coefficients of the Taylor series ex- 
pansion of the solution according to the formulae of Sect.2. All the calculations were 
carried out with double precision and the results for the PA [9,91 are given. 

s 
1 2 

Fig.1 

Fig.2 Fig.3 

To illustrate how quickly the kesults of the calculations are determined, depending on 
the value of the wave number, and to determine the sensitivity of the calculated values to 
the order of the PA IL/L], we list below the dependence (on the order of the PA) of the first 
maximum h(r), the first minimum A@) and the second maximum .@) (hcX) - ] N(%) ]/A',, x = 1 2 3) I , 
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together with the corresponding resonance values of the wave number 6(%) a corresponding to 
the problem of a circular crack 

$d"l [3/31 [4/41 [S/51 (6161 [7/71 [8/81 [9/V 
1.4701 1.4786 1.4791 1.4791 1.4791 1.4791 1 4791 

8% 
0%74 dG71 0% 

1.5 1.5 1.5 1.5 
A(') 
8% 5.2 3.0 3.0 

0.4023 0.3980 0.3975 0.3975 
3.0 3.0 3.0 3.0 

@) - 0.6422 0.7570 0.6929 0.7876 0.6296 0.8358 
6% - 5.2 5.5 4.3 4.3 4.3 4.3 

It is clear from Fig.1 that for elliptical cracks, as the eccentricity of the ellipse 
increases, the value of the first maximum J.(r) at the point (0.4) and the corresponding 
resonance value 3,,rr tend to values corresponding to solutions of the planar problem /ll/ 
(the dashed curve). We note that the value of h(*) at the point (0,an) depends non- 
monotonically on the eccentricity of the ellipse. Increasing the eccentricity of the ellipse 
also leads to degraded convergence of the PA since in the given range of variations of [L/L1 
for the ellipse 1 : 8 at the point (0,~~) only the first maximum is stabilized. This is 
clearly due firstly to purely computational reasons and secondly to the fact that in the 
planar problem the decomposition of the jump displacements in an asymptotic series contains 
not only powers but also logarithmic terms /ll/. 

Comparison of the stress intensities derived using the method based on PA and the two- 
basis projection method /8, 9/, showed that they agree to within 5% for wave numbers in the 
given band. 

One important characteristic which determines the effectiveness of the scattering of 
planar elastic waves by a defect is the total scattering cross-section 2, which is expressed 
in terms of the ratio of the flux density of the energy of the scattered waves averaged over 
the period of the oscillations and integrated over all directions to the flux density of the 
incident waves averaged over the period of oscillation /12/. In the case of normal incidence 
of planar longitudinal waves on the crack, the total scattering cross-section is given by the 
following formula from /12/ 

28, = B/q 5s Im (b) dl 
G 

Fig.2 shows a graph of Z&+)/s for cracks of various shapes, where S is the area of 
the region of the crack and r is the radius of a circle of area S. It illustrates the cases 
of ellipses with axis ratios 1 : 1, 1 : 2 and 1 : 4 and a square (continuous curves 1, 2, 3 
and the dashed curve, respectively). Calculations were carried for all the cracks using the 
two-basis projection method /8, 9/ and for the elliptical cracks using the method based on 
PA. Since the value of 2% as 6-O is of the order of 64, PA were constructed for the 

function Z,@L. Moreover, the Taylor series expansion of Im(b) in terms of 8 contains only 
odd powers, whence we took 6* as an independent variable for this function. Thus, the order 
of the PA used was lower than in the investigation of the stress intensities. The figure 
shows the results corresponding to PA of order [3/4]. The results of the calculations obtained 
by the two methods agree. They also agree with previous results for the problem of a circular 
crack /13/. 

Based on numerical calculations, we may assume that the following isoperimetric inequality 
is satisfied: for all cracks of the same area the greatest value of Z, with respect to 8 
is a maximum for circular cracks. 

4. We consider the non-stationary problem of the effect of shocks normal to the plane 
of the crack for a typical case of a semi-infinite step load H(T) of unit height, applied 
at time -c = 0 (H(z) is the Heaviside function). Application of a Laplace transformation in 
the time domain with parameter s to the equations of the theory of elasticity leads to 
equations which are identical with the equations for the problem of determining fluctuations 
subject to the substitution wa = --s2 /5, I/. Consequently, the pseudodifferential equation 
of the non-stationary problem has the form 

p@Q,*u* = 1 
s, ztzG, u*=O, s@C (4.1) 

u*(x,s) = e(-")u(s,2)dz, 
s 

f=H(s*) 
0 
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where the pseudodifferential operator symbol is derived from the symbol Q2, by the sub- 
stitution 0 = is. From (1.1) and (4.1), its follows that u* (5,s) = b(s,is)/s. Thus, the 
Laplace expansion of the solution of the impact problem in a series with respect to the 
transformation parameter is expressed in terms of the Taylor series expansion with respect 

to the wave number in the problem of determining the oscillations. Inversion of PA of order 

[L/Ml approximating the solution of u*(z,s) does not appear to be difficult, since [L/Ml 
is a rational function /14/. 

In particular, if all the M roots of the replacement of the approximation of order [L/M] 
are simple, then 

u (z, T) = K, +k Kje('f') 
,=I 

(4.2) 

K, = lim u*(z,s)(s- s,) 
S’S, 

where Kj and sj are complex numbers. 
Fig.3 shows the case of PA of order [9,91 including curves of the variation of the 

stress intensities as a function of time at the points of the ellipse (0, ar) and (al, O), where 
the notation for the curves is as in Fig.1. As the eccentricity of the ellipse increases, 
the solutions at the point (0,aa) converge to a solution of the planar problem /15/ and in 
the case of a circle, they compare well with well-known results /5/ and with solutions 
obtained by the authors using the two-basis projection method. It is clear that for ,c=o, 
we have N(O)#O, i.e. there is a computational error (which decreases as the order of the 
PA increases). 

Below, for the example of a circular crack, we show the process of stabilizing the 
p0k.S sj = aj + ibj of PA of the form [L/L] as their order increases, here (I~= -0.595 and 
b, = 1,639 for the given values of [L/L]. 

[L/L1 [4/41 [5/51 iWJ1 [i/71 [8/81 [9/91 
Q -2.332 -2.239 -0.989 -0.708 -0.771 -0.713 

ba 4.249 4.713 4.006 4.249 4,359 4.351 

QII - - -3.081 -4;293 -3.904 -3,830 

bs - - 2.851 2.581 2.440 2.308 

We note that the imaginary parts of the first two poles correspond approximately to the 
first and second maxima of the frequency curve (see Fig.1, the continuous curve I). As the 
eccentricity of the ellipse increases, the convergence of the poles of the corresponding PA 
deteriorates. For example, if we use PA of the form [L/L1 up to L= 9, in the case of a 
circular crack we find three poles close to zero, which for the ellipse 1 : 8 and the same 
range of PA are the only roots close to zero. 

5. In conclusion, we list the individual features of the method of solution employed 
here. 

1. As far as the requirements on the accuracy of computation of the coefficients of the 
Taylor series expansion of the solution as concerned, the set of solvable problems is limited 
only by the shape of the cracks for which we may obtain an analytical expression for the terms 
of the series. However, the fact that we have been successful in the case of elliptical 
cracks suggests that this set of problems is quite large. 

2. Unlike previous methods where, in problems to determine oscillations, it was necessary 
to find a numerical solution for each value of the wave number, here, we obtain analytical 
expressions which approximate solutions directly in some region of variation of the wave 
numbers. 

3. The solution of non-stationary problems usually involves difficult and insufficiently 
accurate procedures for numerical inversion of Laplace or Fourier transformations. In the 
method based on Pad& approximation, this solution is obtained by analytical inversion of an 
approximate expression. 

4. In this method, the computation time depends mainly on the calculation of the Taylor 
series coefficients. Computation of 18 terms required less than 10 minutes in the case of a 
circle and around 6 hours for an ellipse on an EC 1055 or an EC 1055 M computer. All the 
previous calculations both to determine the oscillations and the impact effects take seconds. 

5. It is possible, in principle, to increase the accuracy of the arithmetic operations 
using a large number of Taylor series terms and thus determine an approximate solution in a 
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range of variation of the wave numbers as large as desired. 
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INVARIANT SOLUTIONS OF THE EQUATIONS OF THE NON-ISOTHERMAL STATIONARY FLOW 

OF A VISCOUS FLUID IN TUBES* 

R.N. BAKHTIZIN and R.K. MUKHAMEDSHIN 

The group properties /l/ of a system of equations describing flows in 
tubes of fluids the viscosity of which depends on the temperature are 
investigated for large Peclet numbers. It is shown that for exponential 
and power dependences there is an extension of the main group of 
transformations. For these cases, invariant solutions which have a 
physical meaning are considered. 

The equations describing the motion of a viscous fluid in a cylindrical 
tube may be written, in dimensionless form as follows for 641,Pe2i 
/2/: 


